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Abstract—Gene association/interaction networks have complex
structures that provide a better understanding of mechanisms
at the molecular level that govern essential processes inside the
cell. The interaction mechanisms are conventionally modeled by
nonlinear dynamic systems of coupled differential equations (S-
systems) adhering to the power-law formalism. Our implemen-
tation adopts an S-system that is rich enough in structure to
capture the dynamics of the gene regulatory networks (GRN) of
interest. A comparison of three widely used population-based
techniques, namely evolutionary algorithms (EAs), local best
particle swarm optimization (PSO) with random topology, and
artificial bee colony (ABC) are performed in this study to rapidly
identify a solution to inverse problem of GRN reconstruction for
understanding the dynamics of the underlying system. A simple
yet effective modification of the ABC algorithm, shortly ABC*
is proposed as well and tested on the GRN problem. Simulation
results on two small-size and a medium size hypothetical gene
regulatory networks confirms that the proposed ABC* is superior
to all other search schemes studied here.

I. INTRODUCTION

A genome-wide interaction analysis would open new hori-
zons for biologists, providing a unique ubiquitous structural
component of the genetic architecture of human diseases.
Since many diseases are the result of polygenic and pleiotropic
effects controlled by multiple genes, genome-wide interaction
analysis are preferable over single locus study.

The activation and inhibition of genes are governed by fac-
tors within a cellular environment and outside of the cell. This
level of activation and inhibition of genes are integrated by
gene regulatory networks (GRNs), forming an organizational
level in the cell with complex dynamics [7].

Mathematical modeling of gene is becoming popular in the
post-genome era [18], [21], providing a powerful tool not only
for the better understanding of such complex systems but also
for developing new hypotheses on underlying mechanisms.
The availability of high-throughput technologies provide time
course expression data; and GRN model built by reverse
engineering, may explain the data [24]. Model parameter
estimation is a challenging task and is normally formulated
as an optimization problem [27]. Based on gene expression
data over time, these optimization techniques enable genetic
network architectures to be reconstructed. In this studies, S-
systems, a set of non-linear differential equations of a special

form belonging to the power-law formalism are adopted as
model.

S-system based GRN inference was formulated by Tomi-
naga et al. [28] as an optimization problem to minimize the
difference between the model and the system. To optimize
the network parameters and to capture the dynamics in gene
expression data, they used standard evolutionary algorithms
(EAs) to estimate the model parameters. Evolutionary compu-
tation is becoming a popular approach for solving S-system
parameter optimization [23], [3], [17], mainly due to the
multimodality and strong non-linear parameter-dependencies
in the problem. Extensive simulations were reported in [26]
where the performance of different genetic and evolution-
ary strategies are compared. [20] presents a hybrid genetic
algorithm-particle swarm optimization method to infer appro-
priate network parameters. The results are compared to that
of standard PSO.

To the best of our knowledge, this is the first attempt
to evaluate the ABC algorithm for S-system parameter op-
timization for GRN inference by reverse engineering of three
gene networks. We have also proposed a simple modification
to the ABC algorithm. Moreover, when comparing heuristic
optimization methods, a PSO with random topology is adopted
here. Numerical experiments show that the proposed enhance-
ment on standard ABC algorithm attain higher accuracy and
computational efficiency compared to that of EAs, PSO with
random topology and the standard ABC.

The remainder of this paper is organized as follows. A
short introduction to GRNs and to S-systems is provided
in Section II. The population based model for S-system
parameter identification is presented in Section III with a short
introduction to EA and PSO with random topology. ABC and
ABC* (a simple yet effective modification on standard ABC
algorithm) are presented in Section III-C and III-D respec-
tively. Experimental setup adopted to check the suitability of
ABC and ABC* for gene network estimation as well as a
comparison with EA and PSO are presented in Section IV.
The final section draws conclusions and considers implications
for future research.



II. GENE REGULATORY NETWORKS

GRNs in the cell are a complex dynamic network of interac-
tions between the products of genes (mRNAs) and the proteins
they produce, some of which in return act as regulators of
the expression of other genes (or even their own gene) in
the production of mRNA. While low cost methods to monitor
gene expression through microarrays exist, we still know little
about the complex interactions of these cellular components.
Usually, sets of ordinary differential equations (ODEs) are
used as mathematical models for these systems [29], however
they suffer from many assumptions critical to the equations
themselves. S-system approaches, on the other hand, use time-
independent variables to model these processes. Assuming the
concentration of N proteins, mRNAs, or small molecules at
time t is given by y1(t), y2(t), . . . , yi(t), . . . , yN (t), S-systems
models the temporal evolution of the jth component at time t
by power-law functions of the form (1).
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where N represents the number of genes involved in the GRN.
The first term represents all factors that promote the expression
of component i, yi, whereas the second term represents all
factors that inhibit its expression. In a biochemical engineering
context, the non-negative parameters αi , βi are called rate
constants, and real-valued exponents gij (G matrix, [G]) and
hij (H matrix, [H]) are, respectively, referred to as kinetic
order for synthesis and kinetic order for degradation.
{α, β, [G], [H]} are the parameters that define the S-system.

The total number of parameters in the S-system is 2N(N+1),
meaning the number of parameters increases quadratically and
can quickly become very large. The parameter estimation is to
determine model parameters so that the dynamic profiles fit the
observation. Attaining appropriate model parameter values is a
challenging task since there is no general solution guaranteed
to solve the problem in nonlinear parameter estimation.

III. POPULATION BASED S-SYSTEMS MODEL PARAMETER
IDENTIFICATION

Let us define the search space as the following:

E =

D⊗
d=1

[mind,maxd], (2)

To guide the population in the search space, some mea-
sure of discrimination is needed. The most commonly used
quality assessment criterion is the mean quadratic discrepancy
between the observed expression pattern yti and the model
output ŷti [25].

f =

N∑
i=1

T∑
t=1

(
ŷti − yti

yti

)2

, (3)

where N represents the number of genes of the network of
interest and T is the number of time points.

A. Evolutionary algorithms

Evolutionary algorithms (EAs) are stochastic population-
based search method inspired from the evolutions scheme
of natural selection [12]. EA includes methods of genetic
algorithms (GAs) [2], [13], evolution strategies (ESs) and
some other derivatives including genetic programming [19].
Although they are different in some details, they are broadly
similar. They all maintain a population of solutions of which
are randomly generated in initialization phase. To guide the
evolution by discriminating good solutions from bad ones,
a fitness is assigned to every individual. Selection and ge-
netic operators are iteratively evolving the population [9].
Recombination and mutation are often used genetic opera-
tors. The Simulated Binary Crossover (SBX) [11], a real-
parameter recombination operator that emulates the single-
point crossover, is a widely used operator to combine pieces of
parental solutions to from offsprings. Mutation, that restores
genetic diversity lost, is an operator whereby random changes
are introduced into a solution, thereby reducing the risk of the
search algorithm becoming trapped in local. Throughout this
study SBX crossover and polynomial mutation are adopted.

B. Particle swarm optimization with random topology

In classical particle swarm optimization (PSO), every parti-
cle is a potential solution moving in a D-dimensional search
space. A collection of particles are known as swarm. Each
particle i has a position, xi ∈ IRD, a velocity, vi ∈ IRD

and the best position found so far, pi ∈ IRD. In contrast
to global best PSO, in local best PSO each particle informs
only k other randomly chosen particles, known as information
links or neighbors. Neighbors are, often, defined once at the
beginning of the search process [1]. Derived from the fact that
no topology is proven to be globally the best [6], we used a
randomly chosen neighbors both at the beginning of search as
well as once the previous global best position found by swarm,
gi ∈ IRD has not improved. Random topology [16], a popular
local best PSO is a particular case of a stochastic star [22].

The movement equations are given by expressions (4)
and (5).

vi = wvi + x′
i − xi, (4)

xi = xi + vi, (5)

where w is a predefined constant representing the confidence
of particle on its own movements. x′

i ∈ IRD denoted a point
drawn uniformly at random from a hypersphere H with center
Gi ∈ IRD and radius ∥Gi −xi∥. Gi, the center of gravity [5],
also known as queen [4] is defined as:

Gi = xi + c
pi + li − 2xi

3
, (6)

li ∈ IRD is the best previous position found in the neighbor
particles and c ∈ U(0, cmax) represents the confidence of
particle on its best performance and that of its best neighbor
respectively.



C. Artificial Bee Colony (ABC)

ABC algorithm [14] is one of the most recently introduced
population-based algorithms inspired form the intelligent for-
aging behavior of a honeybee swarm. Honeybees have many
well-defined behaviors. Information exchange among bees,
contributing in system’s collective knowledge formation, hap-
pens in ’dance language’ reflecting the quality of the food
source visited by employed forager, its distance from the hive
and the direction. Food source exploitation is a process carried
out by both employed and onlooker bees. Onlookers try to
find trace information on food source provided by employed
bees. The probability an onlooker chooses a food source
is proportional to the profitability of the food source. The
exploration process is controlled by scouts, moving randomly
in the solution space seeking for new sources of food.

In the ABC algorithm, the food source position, xi ∈
IRD, i = 1, 2, . . . , SN represents a D-dimensional candidate
solution. Food source profitability is the fitness, fi, of can-
didate solution. An employed bee explores its surroundings
according to (7).

vij = xij + ϕij (xij − xkj) (7)

where k ∈ {1, 2, . . . , SN} and k ̸= i. ϕij is a random number
generated from U(−1, 1) and j ∈ {1, 2, . . . , D} respectively.
vij , a new food position, is perturbation of xij in dimension
j ∈ {1, 2, . . . , D}. If the fitness of the new position is superior
to the old one, the new position, vij is memorized by the bee.
Otherwise the previous position is kept unchanged.

The information-sharing process begins when all employed
bees complete the search process. The probability of a food
source to be chosen by an onlooker is calculated by expres-
sion (8).

pi =
fiti

SN∑
n=1

fitn

. (8)

D. Modified Artificial Bee Colony (ABC*)

Our modification of the ABC algorithm is as following. The
employed bees explore their neighbor according to (7), but the
onlookers exploration takes place according to (9)

vij = xij + ϕij

(
xij − xkj

)
(9)

where again k ∈ {1, 2, . . . , SN} and k ̸= i. ϕij is a random
number generated from U(−1, 1) for all j. Without loss of
generality that jl ≤ ju, j is an interval with jl and ju
corresponding to its end points where jl, ju ∈ {1, 2, . . . , D}.
In this study the performance of both ABC and ABC* are
compared with a set of well-established inference methods,
evolutionary algorithms and swarm intelligence, effective and
efficient population-based optimization method capable of
handling nonlinear and multimodal objective functions.

IV. EXPERIMENTAL SETUP AND NUMERICAL RESULTS

As the evolutionary optimization techniques are stochastic
in nature, 30 independent runs are performed for each exper-
imental setup with average and std of results being reported
along with the results of Mann-Whitney U-test for statistical
test of significance.

A. Settings

In all experiments in this section, the common parameters
used in each algorithm such as population size and total
number of fitness evaluation were chosen to be the same.
Unless otherwise mentioned, the population size was set at 50.
The maximum number of fitness evaluation was set at 200,000
for the first two networks (NET1 and NET2) and 500,000 for
the third network (NET3).

1) EA settings: A real-coded evolutionary algorithm, for the
following GRN model identification was run using a crossover
rate of 1.0 (using SBX), a binary tournament for mating
selection with replacement and a polynomial mutation (PM)
as described by Deb [11]. Mutation rate was set at 0.1 and the
distribution indices ηc = 20 and ηm = 20 are applied.

2) PSO settings: [5] notes that the appropriate swarm size
s is usually smaller than EAs population size and suggests a
swarm size of s = 10+2∗

√
D. In an attempt to achieve a fair

comparison of results, for NET1 and NET2, a swarm size of
20 running for 10000 iterations (PSO2) in addition to a swarm
size of 50 running for 4000 iterations (PSO1) was adopted. In
the case of NET3, a swarm size of 40 was adopted.

The PSO parameters across the experiments are w = 1
2ln(2) ,

cmax = 1
2 + ln(2), [6]. k, the number of neighbors was set at

3.
3) ABC and ABC* settings: Apart from the common pa-

rameters, namely the number of population and maximum
number of fitness evaluation, ABC and ABC* use only one
control parameter, which that is called limit. If a food source
cannot be further improved within limit ’trial numbers’, it is
assumed to be abandoned and the corresponding employed bee
becomes a scout. This means that these solutions will not be
exploited anymore. In [15], the limit value was determined
using the dimension of the problem and the colony size
according to (10).

limit = (SN ∗D) (10)

where D is the dimension of the problem and SN is the
population size or the number of food sources.

To assess the performance of the methodologies, two small-
size hypothetical gene regulatory networks, NET1 and NET2,
each consist of a network of two genes generated by the
parameters given in Table I and II as well as a medium-size
GRN, NET3, with parameters given in Table III are adopted.

The gene expression levels of the networks are plotted in
Figures 1, 2 and 3 each consist of 50 time course of expression



i αi βi gi1 gi2 hi1 gi2
1 3 3 0 2.5 -1 0
2 3 3 -2.5 0 0 2

TABLE I: S-System Parameters for Network Model NET1
adopted for model validation [28].

i αi βi gi1 gi2 hi1 gi2
1 3 3 0 -2.5 .1 0
2 3 3 2.5 0 0 .1

TABLE II: S-System Parameters for Network Model NET2
adopted for model validation.
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Fig. 1: Target time dynamics of first gene network,
NET1.
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Fig. 2: Target time dynamics of second gene network, NET2.

i αi gi1
1 5 0 0 0 1 0 -2 0 0 0 0
2 10 0 0 1 0 0 0 0 -1 0 0
3 8 -1 0 0 -1 0 0 0 0 0 0
4 10 0 0 0 0 2 0 0 0 1 0
5 10 0 2 0 0 0 -1 0 0 0 0
6 5 0 0 0 0 0 0 0 0 2 -2
7 10 0 0 0 0 0 1 0 0 0 -1
8 5 1 -2 0 0 0 0 1 0 0 0
9 10 0 0 1 0 0 0 0 -2 0 0
10 8 2 0 0 0 0 0 -1 0 0 0

i βi hi1

1 10 2 0 0 0 0 0 0 0 0 0
2 10 0 2 0 0 0 0 0 0 0 0
3 10 0 0 2 0 0 0 0 0 0 0
4 10 0 0 0 2 0 0 0 0 0 0
5 10 0 0 0 0 2 0 0 0 0 0
6 10 0 0 0 0 0 2 0 0 0 0
7 10 0 0 0 0 0 0 2 0 0 0
8 10 0 0 0 0 0 0 0 2 0 0
9 10 0 0 0 0 0 0 0 0 2 0
10 10 0 0 0 0 0 0 0 0 0 2

TABLE III: S-System Parameters for Network Model NET3
adopted for model validation [20].
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Fig. 3: Target time dynamics of third gene network, NET3.

level per gene. The search space for αi and βi is limited to
[20, 0.0] and for gij and hij to [−4.0, 4.0].

The fitness transitions for different methodologies for
NET1-3 are plotted in a logarithmic scale in Figures 4, 5 and
Figure 6 respectively. Though all algorithms discussed here
start with randomly generated population of solutions, PSO2
starts with worse fitness value due to the smaller population
size. The Figures are averaged over 30 independent runs.

In NET1 and NET2, PSO2 starts with a sharp fitness de-
crease in the beginning, but started to become almost stagnate
after approximately 20,000 fitness evaluations in case of NET1
and 50,000 fitness evaluations in case of NET2 on average.
The EA in both cases had a slow progression compared to all
other studied schemes whereas PSO1 and ABC* had much
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Fig. 4: Performance comparison of the EA, PSO1, PSO2, ABC
and ABC* on NET1.
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Fig. 5: Performance comparison of the EA, PSO1, PSO2, ABC
and ABC* on NET2.

better progression compared to the rest. ABC presents the
slowest convergence rate in the beginning after EA, but unlike
EA, shows steady improvement in fitness value. In the case of
NET3, PSO1 and PSO2 are presenting almost a same fitness
evolution.

According to the Mann-Whitney U-test (Table IV, V
and VI), the results of proposed ABC* approach, are better
than that of ABC with a significance level of 5%. For the case
of NET2 and NET3, ABC* is significantly superior to all other
schemes treated here, whereas in case of NET1, while ABC*
is not significantly superior to that of PSO1, it has a much
lower mean error and lower variance.
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Fig. 6: Performance comparison of the EA, PSO1, PSO2, ABC
and ABC* on NET3.

Simulation results
NET1 Mean std. p-Value

EA 1.46 1.37 1.1737×10−09

SPSO1 0.26 0.29 0.2772
SPSO2 0.65 0.75 9.06×10−8

ABC 0.38 0.18 1.0702×10−9

ABC* 0.09 0.08 -

TABLE IV: A Mann-Whitney U test of the fitness of last
generation for NET1 (30 runs).

Simulation results
NET2 Mean std. p-Value

EA 3.20 2.51 5.0922×10−08

SPSO1 0.41 0.44 0.0461
SPSO2 1.32 1.59 0.0067
ABC 1.25 0.53 3.1589×10−10

ABC* 0.21 0.23 -

TABLE V: A Mann-Whitney U test of the fitness of last
generation for NET2 (30 runs).

Simulation results
NET2 Mean std. p-Value

EA 60.6 22.5 3.0199×10−11

SPSO1 33.2 0.9172 5.9242×10−09

SPSO2 33.7 1.21 2.6547×10−09

ABC 41.5 2.65 3.0199×10−11

ABC* 31.1 1.11 -

TABLE VI: A Mann-Whitney U test of the fitness of last
generation for NET3 (30 runs).



V. CONCLUSIONS AND FUTURE WORK

In this paper, the standard artificial bee colony (ABC) and
its variant proposed in this paper, ABC*, are employed for
estimating genetic networks using S-system formalism. The
performance of the ABC* method, which enhance the global
searching capability of ABC, was verified using two small-
scale and one medium-scale hypothetical networks and the
experiments shows that the proposed method is capable to
identify model parameters. From the simulation results it is
concluded that the proposed ABC* is superior to all other
search schemes studied here, namely evolutionary algorithms
and local best particle swarm optimization with random topol-
ogy, in terms of smaller mean of error and smaller variance.

Much of the computational complexity involved in the use
of population-based optimization tools is due to the fitness
function evaluation that may either be very difficult to define
or be computationally very expensive. One of the popular
solutions to this challenge is to replace the expensive fitness
evaluation step with an approximate model. As part of our
future work, we are interested in studying the performance of
some of this type of solutions, like those proposed in [8], [10]
on reverse engineering gene regulatory networks.

Finally, we wish to apply the ABC and ABC* algorithms
to actual biological gene network to further verify its effec-
tiveness more comprehensively.
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